On 4 May 2009 at 1045 h, one of us (EGP) observed an adult *A. tigris* drinking polluted water from a drainage pipe (Fig. 1). This observation took place in the vicinity of El Huerfanito, Municipio de Ensenada, Baja California, Mexico (30.115101°N, 114.619477°W; WGS 84; elev. 3 m). The lizard drank water for ca. 0.5 min, using tongue-flicking movements. The consumed water contained residuals of food, and was polluted with detergent used for washing dishes. We assume that lizards, especially those living in arid regions, will obtain water from artificial sources when it can be easily accessed. Opportunistic water acquisition within this genus has also been reported for *A. guttata* (Mata-González et al., 2016). To the best of our knowledge, this report represents the first observation of water drinking behavior in *A. tigris*.

Acknowledgments.—A special thanks to Gustavo Arnaud-Franco for logistical support and field assistance.

Literature Cited

Elías García-Padilla and **Vicente Mata-Silva**

Ctenosaura pectinata (Wiegmann, 1834). Bifurcated tail. Caudal autotomy in lizards can be defined as the ability to shed the tail as a response to attempted predation (Bateman and Fleming, 2009). This phenomenon occurs due to the fracture of caudal vertebrae at distinct regions called fracture planes (Ananjeva and Danov, 1991; Zug, 1993; Bateman and Fleming, 2009). Following a caudal autotomy event, one of the most important steps is regeneration of the lost tail (Clause and Capaldi, 2006; Alibardi, 2010). In some natural cases the fracture of caudal vertebrae can be incomplete, and as consequence another tail might grow, resulting in two (bifurcation) or more (supernumerary) tails (Alibardi, 2010; Gogliath et al., 2012; Dudek and Ekner-Grzyb, 2014; Pelegrin and Muniz Leão, 2016). Caudal autotomy as defensive mechanism occurs in such reptile groups as tuataras, lizards, and snakes (Bateman and Fleming, 2009). Surprisingly, however, little information on caudal autotomy is available for members of the family Iguanidae (e.g., Etheridge and de Queiroz, 1988; Alberts et al., 2004). Here, we report a case of bifurcation in the tail of an insular individual of the Western Spiny-tailed Iguana, *Ctenosaura pectinata*.
In March of 2002, at Parque Nacional Isla Isabel, located 28 km off the coast of Nayarit, Mexico (21°50’33”N, 105°53’08”W; datum WGS 84; elev. 6 m), we observed and photographed an adult female *C. pectinata* (snout–vent length ≤ 30 cm; specimen not captured) with a bifurcated tail (Fig. 1A). One of the regenerated tails (ventral tail) was slightly shorter than the other, but similar in thickness (Fig. 1B). The tail of the individual was bifurcated at an acute angle, just past the medial region. In certain cases the tail of some lizards does not detach, resulting in incomplete caudal autotomy and leading to a regenerated tail with two or more tips (Dudek and Ekner-Grzyb, 2014; Pelegrin and Muniz Leão, 2016). To our knowledge, this is the first report of a tail abnormality in *C. pectinata*, a species endemic to Mexico. The distribution of this species is along the Pacific coast of Mexico from southern Sinaloa to Chiapas, including Isla Isabel, Las Islas Marias, and some inland states in the Balsas Basin, at elevations from sea level to 2,000 m (Hollingsworth, 2004; Ramírez-Bautista and Hernández-Ibarra, 2004; Köhler, 2008). We were unable to determine if the tail loss was caused by a predatory attempt or by an intraspecific encounter.

Fig. 1. (A) A female *Ctenosaura pectinata* photographed basking on a rock wall at Parque Nacional Isla Isabel, Nayarit, Mexico, and (B) a close-up of the tail. © Fabio Germán Cupul-Magaña

Literature Cited

Gonatodes albogularis. Predation by a Brown Vinesnake (Oxybelis aeneus). Gonatodes albogularis is the most wide-ranging species in its genus, with a distribution extending from southern Mexico to northern South America, including several adjacent islands, as well as in Cuba, Grand Cayman, Hispaniola, and Jamaica; it also has been introduced into southern Florida (Schwartz and Henderson, 1991) and presumably in Belize (Lee, 2000). Typically, it can be seen perched about a meter above the ground on the walls of wooden houses and buildings, where it seeks refuge in crevices when alarmed; it also inhabits the bark trees, even in semi-urban areas (Stafford and Meyer, 2000). Natural predators of this species include birds, larger lizards, mammals, and snakes (Fitch, 1973; Bello, 2000; Sosa-Bartuano and Lau, 2016).

The distribution of the Brown Vinesnake, Oxybelis aeneus is one of the widest among Neotropical snakes, as it ranges from southern Arizona, in the United States, and Tamaulipas, Mexico, southward throughout Central America and most of South America to at least central Bolivia and southeastern Brazil, and perhaps Paraguay and northern Argentina (Keiser 1974; Solórzano, 2004). Adults are long (to about 1.70 m) and extremely slender, with a pointed snout (Savage, 2002). This species is equipped with enlarged rear fangs and a moderate venom, and their bite is known to cause swelling and blisters (Crimmins, 1937). Oxybelis aeneus also appears to ambush its prey, rather than actively forage (Campbell, 1998), and feeds on a variety of vertebrates such as insects, fishes, amphibians, lizards, small rodents, arboreal mammals, and birds, fish (Henderson, 1982; Campbell, 1998; Savage, 2002; Hetherington, 2006; Natera-Mumaw et al., 2015). Studies indicate, however, that O. aeneus has a dietary preference for lizards, especially anoles (Keiser, 1967; Henderson, 1982; Wilson and Cruz-Díaz, 1993; Lee, 1996; Savage, 2002). Lizards reported in its diet include Basiliscus plumifrons, B. vitattus, Cnemidophorus lemniscatus, Gymnophthalmus speciosus, Iguana iguana, Norops bourgeaei, N. rodriguezii, N. uniformis, and Sceloporus melanorhinus (Smith and Grant, 1958; Lee, 1996; Green, 1997; Campbell, 1998; Savage, 2002; Diener, 2007; Grant and Lewis, 2010; López-de la Cruz et al., 2016). Carr (1966) and Blanco-Torres and Renjifo (2014) show photos of O. aeneus preying on an anole and a Gonatodes vittatus, respectively.